#pragma once // MESSAGE AHRS PACKING #define MAVLINK_MSG_ID_AHRS 163 typedef struct __mavlink_ahrs_t { float omegaIx; /*< [rad/s] X gyro drift estimate.*/ float omegaIy; /*< [rad/s] Y gyro drift estimate.*/ float omegaIz; /*< [rad/s] Z gyro drift estimate.*/ float accel_weight; /*< Average accel_weight.*/ float renorm_val; /*< Average renormalisation value.*/ float error_rp; /*< Average error_roll_pitch value.*/ float error_yaw; /*< Average error_yaw value.*/ } mavlink_ahrs_t; #define MAVLINK_MSG_ID_AHRS_LEN 28 #define MAVLINK_MSG_ID_AHRS_MIN_LEN 28 #define MAVLINK_MSG_ID_163_LEN 28 #define MAVLINK_MSG_ID_163_MIN_LEN 28 #define MAVLINK_MSG_ID_AHRS_CRC 127 #define MAVLINK_MSG_ID_163_CRC 127 #if MAVLINK_COMMAND_24BIT #define MAVLINK_MESSAGE_INFO_AHRS { \ 163, \ "AHRS", \ 7, \ { { "omegaIx", NULL, MAVLINK_TYPE_FLOAT, 0, 0, offsetof(mavlink_ahrs_t, omegaIx) }, \ { "omegaIy", NULL, MAVLINK_TYPE_FLOAT, 0, 4, offsetof(mavlink_ahrs_t, omegaIy) }, \ { "omegaIz", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_ahrs_t, omegaIz) }, \ { "accel_weight", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_ahrs_t, accel_weight) }, \ { "renorm_val", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_ahrs_t, renorm_val) }, \ { "error_rp", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_ahrs_t, error_rp) }, \ { "error_yaw", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_ahrs_t, error_yaw) }, \ } \ } #else #define MAVLINK_MESSAGE_INFO_AHRS { \ "AHRS", \ 7, \ { { "omegaIx", NULL, MAVLINK_TYPE_FLOAT, 0, 0, offsetof(mavlink_ahrs_t, omegaIx) }, \ { "omegaIy", NULL, MAVLINK_TYPE_FLOAT, 0, 4, offsetof(mavlink_ahrs_t, omegaIy) }, \ { "omegaIz", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_ahrs_t, omegaIz) }, \ { "accel_weight", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_ahrs_t, accel_weight) }, \ { "renorm_val", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_ahrs_t, renorm_val) }, \ { "error_rp", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_ahrs_t, error_rp) }, \ { "error_yaw", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_ahrs_t, error_yaw) }, \ } \ } #endif /** * @brief Pack a ahrs message * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * * @param omegaIx [rad/s] X gyro drift estimate. * @param omegaIy [rad/s] Y gyro drift estimate. * @param omegaIz [rad/s] Z gyro drift estimate. * @param accel_weight Average accel_weight. * @param renorm_val Average renormalisation value. * @param error_rp Average error_roll_pitch value. * @param error_yaw Average error_yaw value. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_ahrs_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, float omegaIx, float omegaIy, float omegaIz, float accel_weight, float renorm_val, float error_rp, float error_yaw) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_AHRS_LEN]; _mav_put_float(buf, 0, omegaIx); _mav_put_float(buf, 4, omegaIy); _mav_put_float(buf, 8, omegaIz); _mav_put_float(buf, 12, accel_weight); _mav_put_float(buf, 16, renorm_val); _mav_put_float(buf, 20, error_rp); _mav_put_float(buf, 24, error_yaw); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_AHRS_LEN); #else mavlink_ahrs_t packet; packet.omegaIx = omegaIx; packet.omegaIy = omegaIy; packet.omegaIz = omegaIz; packet.accel_weight = accel_weight; packet.renorm_val = renorm_val; packet.error_rp = error_rp; packet.error_yaw = error_yaw; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_AHRS_LEN); #endif msg->msgid = MAVLINK_MSG_ID_AHRS; return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); } /** * @brief Pack a ahrs message * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param status MAVLink status structure * @param msg The MAVLink message to compress the data into * * @param omegaIx [rad/s] X gyro drift estimate. * @param omegaIy [rad/s] Y gyro drift estimate. * @param omegaIz [rad/s] Z gyro drift estimate. * @param accel_weight Average accel_weight. * @param renorm_val Average renormalisation value. * @param error_rp Average error_roll_pitch value. * @param error_yaw Average error_yaw value. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_ahrs_pack_status(uint8_t system_id, uint8_t component_id, mavlink_status_t *_status, mavlink_message_t* msg, float omegaIx, float omegaIy, float omegaIz, float accel_weight, float renorm_val, float error_rp, float error_yaw) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_AHRS_LEN]; _mav_put_float(buf, 0, omegaIx); _mav_put_float(buf, 4, omegaIy); _mav_put_float(buf, 8, omegaIz); _mav_put_float(buf, 12, accel_weight); _mav_put_float(buf, 16, renorm_val); _mav_put_float(buf, 20, error_rp); _mav_put_float(buf, 24, error_yaw); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_AHRS_LEN); #else mavlink_ahrs_t packet; packet.omegaIx = omegaIx; packet.omegaIy = omegaIy; packet.omegaIz = omegaIz; packet.accel_weight = accel_weight; packet.renorm_val = renorm_val; packet.error_rp = error_rp; packet.error_yaw = error_yaw; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_AHRS_LEN); #endif msg->msgid = MAVLINK_MSG_ID_AHRS; #if MAVLINK_CRC_EXTRA return mavlink_finalize_message_buffer(msg, system_id, component_id, _status, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); #else return mavlink_finalize_message_buffer(msg, system_id, component_id, _status, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN); #endif } /** * @brief Pack a ahrs message on a channel * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param omegaIx [rad/s] X gyro drift estimate. * @param omegaIy [rad/s] Y gyro drift estimate. * @param omegaIz [rad/s] Z gyro drift estimate. * @param accel_weight Average accel_weight. * @param renorm_val Average renormalisation value. * @param error_rp Average error_roll_pitch value. * @param error_yaw Average error_yaw value. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_ahrs_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, float omegaIx,float omegaIy,float omegaIz,float accel_weight,float renorm_val,float error_rp,float error_yaw) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_AHRS_LEN]; _mav_put_float(buf, 0, omegaIx); _mav_put_float(buf, 4, omegaIy); _mav_put_float(buf, 8, omegaIz); _mav_put_float(buf, 12, accel_weight); _mav_put_float(buf, 16, renorm_val); _mav_put_float(buf, 20, error_rp); _mav_put_float(buf, 24, error_yaw); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_AHRS_LEN); #else mavlink_ahrs_t packet; packet.omegaIx = omegaIx; packet.omegaIy = omegaIy; packet.omegaIz = omegaIz; packet.accel_weight = accel_weight; packet.renorm_val = renorm_val; packet.error_rp = error_rp; packet.error_yaw = error_yaw; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_AHRS_LEN); #endif msg->msgid = MAVLINK_MSG_ID_AHRS; return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); } /** * @brief Encode a ahrs struct * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * @param ahrs C-struct to read the message contents from */ static inline uint16_t mavlink_msg_ahrs_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_ahrs_t* ahrs) { return mavlink_msg_ahrs_pack(system_id, component_id, msg, ahrs->omegaIx, ahrs->omegaIy, ahrs->omegaIz, ahrs->accel_weight, ahrs->renorm_val, ahrs->error_rp, ahrs->error_yaw); } /** * @brief Encode a ahrs struct on a channel * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param ahrs C-struct to read the message contents from */ static inline uint16_t mavlink_msg_ahrs_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_ahrs_t* ahrs) { return mavlink_msg_ahrs_pack_chan(system_id, component_id, chan, msg, ahrs->omegaIx, ahrs->omegaIy, ahrs->omegaIz, ahrs->accel_weight, ahrs->renorm_val, ahrs->error_rp, ahrs->error_yaw); } /** * @brief Encode a ahrs struct with provided status structure * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param status MAVLink status structure * @param msg The MAVLink message to compress the data into * @param ahrs C-struct to read the message contents from */ static inline uint16_t mavlink_msg_ahrs_encode_status(uint8_t system_id, uint8_t component_id, mavlink_status_t* _status, mavlink_message_t* msg, const mavlink_ahrs_t* ahrs) { return mavlink_msg_ahrs_pack_status(system_id, component_id, _status, msg, ahrs->omegaIx, ahrs->omegaIy, ahrs->omegaIz, ahrs->accel_weight, ahrs->renorm_val, ahrs->error_rp, ahrs->error_yaw); } /** * @brief Send a ahrs message * @param chan MAVLink channel to send the message * * @param omegaIx [rad/s] X gyro drift estimate. * @param omegaIy [rad/s] Y gyro drift estimate. * @param omegaIz [rad/s] Z gyro drift estimate. * @param accel_weight Average accel_weight. * @param renorm_val Average renormalisation value. * @param error_rp Average error_roll_pitch value. * @param error_yaw Average error_yaw value. */ #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS static inline void mavlink_msg_ahrs_send(mavlink_channel_t chan, float omegaIx, float omegaIy, float omegaIz, float accel_weight, float renorm_val, float error_rp, float error_yaw) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_AHRS_LEN]; _mav_put_float(buf, 0, omegaIx); _mav_put_float(buf, 4, omegaIy); _mav_put_float(buf, 8, omegaIz); _mav_put_float(buf, 12, accel_weight); _mav_put_float(buf, 16, renorm_val); _mav_put_float(buf, 20, error_rp); _mav_put_float(buf, 24, error_yaw); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_AHRS, buf, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); #else mavlink_ahrs_t packet; packet.omegaIx = omegaIx; packet.omegaIy = omegaIy; packet.omegaIz = omegaIz; packet.accel_weight = accel_weight; packet.renorm_val = renorm_val; packet.error_rp = error_rp; packet.error_yaw = error_yaw; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_AHRS, (const char *)&packet, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); #endif } /** * @brief Send a ahrs message * @param chan MAVLink channel to send the message * @param struct The MAVLink struct to serialize */ static inline void mavlink_msg_ahrs_send_struct(mavlink_channel_t chan, const mavlink_ahrs_t* ahrs) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS mavlink_msg_ahrs_send(chan, ahrs->omegaIx, ahrs->omegaIy, ahrs->omegaIz, ahrs->accel_weight, ahrs->renorm_val, ahrs->error_rp, ahrs->error_yaw); #else _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_AHRS, (const char *)ahrs, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); #endif } #if MAVLINK_MSG_ID_AHRS_LEN <= MAVLINK_MAX_PAYLOAD_LEN /* This variant of _send() can be used to save stack space by re-using memory from the receive buffer. The caller provides a mavlink_message_t which is the size of a full mavlink message. This is usually the receive buffer for the channel, and allows a reply to an incoming message with minimum stack space usage. */ static inline void mavlink_msg_ahrs_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, float omegaIx, float omegaIy, float omegaIz, float accel_weight, float renorm_val, float error_rp, float error_yaw) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char *buf = (char *)msgbuf; _mav_put_float(buf, 0, omegaIx); _mav_put_float(buf, 4, omegaIy); _mav_put_float(buf, 8, omegaIz); _mav_put_float(buf, 12, accel_weight); _mav_put_float(buf, 16, renorm_val); _mav_put_float(buf, 20, error_rp); _mav_put_float(buf, 24, error_yaw); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_AHRS, buf, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); #else mavlink_ahrs_t *packet = (mavlink_ahrs_t *)msgbuf; packet->omegaIx = omegaIx; packet->omegaIy = omegaIy; packet->omegaIz = omegaIz; packet->accel_weight = accel_weight; packet->renorm_val = renorm_val; packet->error_rp = error_rp; packet->error_yaw = error_yaw; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_AHRS, (const char *)packet, MAVLINK_MSG_ID_AHRS_MIN_LEN, MAVLINK_MSG_ID_AHRS_LEN, MAVLINK_MSG_ID_AHRS_CRC); #endif } #endif #endif // MESSAGE AHRS UNPACKING /** * @brief Get field omegaIx from ahrs message * * @return [rad/s] X gyro drift estimate. */ static inline float mavlink_msg_ahrs_get_omegaIx(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 0); } /** * @brief Get field omegaIy from ahrs message * * @return [rad/s] Y gyro drift estimate. */ static inline float mavlink_msg_ahrs_get_omegaIy(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 4); } /** * @brief Get field omegaIz from ahrs message * * @return [rad/s] Z gyro drift estimate. */ static inline float mavlink_msg_ahrs_get_omegaIz(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 8); } /** * @brief Get field accel_weight from ahrs message * * @return Average accel_weight. */ static inline float mavlink_msg_ahrs_get_accel_weight(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 12); } /** * @brief Get field renorm_val from ahrs message * * @return Average renormalisation value. */ static inline float mavlink_msg_ahrs_get_renorm_val(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 16); } /** * @brief Get field error_rp from ahrs message * * @return Average error_roll_pitch value. */ static inline float mavlink_msg_ahrs_get_error_rp(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 20); } /** * @brief Get field error_yaw from ahrs message * * @return Average error_yaw value. */ static inline float mavlink_msg_ahrs_get_error_yaw(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 24); } /** * @brief Decode a ahrs message into a struct * * @param msg The message to decode * @param ahrs C-struct to decode the message contents into */ static inline void mavlink_msg_ahrs_decode(const mavlink_message_t* msg, mavlink_ahrs_t* ahrs) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS ahrs->omegaIx = mavlink_msg_ahrs_get_omegaIx(msg); ahrs->omegaIy = mavlink_msg_ahrs_get_omegaIy(msg); ahrs->omegaIz = mavlink_msg_ahrs_get_omegaIz(msg); ahrs->accel_weight = mavlink_msg_ahrs_get_accel_weight(msg); ahrs->renorm_val = mavlink_msg_ahrs_get_renorm_val(msg); ahrs->error_rp = mavlink_msg_ahrs_get_error_rp(msg); ahrs->error_yaw = mavlink_msg_ahrs_get_error_yaw(msg); #else uint8_t len = msg->len < MAVLINK_MSG_ID_AHRS_LEN? msg->len : MAVLINK_MSG_ID_AHRS_LEN; memset(ahrs, 0, MAVLINK_MSG_ID_AHRS_LEN); memcpy(ahrs, _MAV_PAYLOAD(msg), len); #endif }