data/method/mavlink/pymavlink/tools/magfit_elliptical.py

231 lines
6.5 KiB
Python

#!/usr/bin/env python
'''
fit best estimate of magnetometer offsets
'''
from __future__ import print_function
import sys, time, os, math
from argparse import ArgumentParser
parser = ArgumentParser(description=__doc__)
parser.add_argument("--no-timestamps", dest="notimestamps", action='store_true', help="Log doesn't have timestamps")
parser.add_argument("--condition", default=None, help="select packets by condition")
parser.add_argument("--noise", type=float, default=0, help="noise to add")
parser.add_argument("--mag2", action='store_true', help="use 2nd mag from DF log")
parser.add_argument("--radius", default=500.0, type=float, help="target radius")
parser.add_argument("--plot", action='store_true', help="plot points in 3D")
parser.add_argument("logs", metavar="LOG", nargs="+")
args = parser.parse_args()
from pymavlink import mavutil
from pymavlink.rotmat import Vector3
from pymavlink.rotmat import Matrix3
def noise():
'''a noise vector'''
from random import gauss
v = Vector3(gauss(0, 1), gauss(0, 1), gauss(0, 1))
v.normalize()
return v * args.noise
def select_data(data):
ret = []
counts = {}
for d in data:
mag = d
key = "%u:%u:%u" % (mag.x/20,mag.y/20,mag.z/20)
if key in counts:
counts[key] += 1
else:
counts[key] = 1
if counts[key] < 3:
ret.append(d)
print((len(data), len(ret)))
return ret
def constrain(v, min, max):
if v < min:
return min
if v > max:
return max
return v
def correct(mag, offsets, diag, offdiag):
'''correct a mag sample'''
diag.x = 1.0
mat = Matrix3(
Vector3(diag.x, offdiag.x, offdiag.y),
Vector3(offdiag.x, diag.y, offdiag.z),
Vector3(offdiag.y, offdiag.z, diag.z))
mag = mag + offsets
mag = mat * mag
return mag
def radius(mag, offsets, diag, offdiag):
'''return radius give data point and offsets'''
mag = correct(mag, offsets, diag, offdiag)
return mag.length()
def radius_cmp(a, b, offsets, diag, offdiag):
'''return +1 or -1 for for sorting'''
diff = radius(a, offsets, diag, offdiag) - radius(b, offsets, diag, offdiag)
if diff > 0:
return 1
if diff < 0:
return -1
return 0
def sphere_error(p, data):
x,y,z,r,dx,dy,dz,odx,ody,odz = p
if args.radius is not None:
r = args.radius
ofs = Vector3(x,y,z)
diag = Vector3(dx, dy, dz)
offdiag = Vector3(odx, ody, odz)
ret = []
for d in data:
mag = correct(d, ofs, diag, offdiag)
err = r - mag.length()
ret.append(err)
return ret
def fit_data(data):
from scipy import optimize
p0 = [0.0, 0.0, 0.0, # offsets
500.0, # radius
1.0, 1.0, 1.0, # diagonals
0.0, 0.0, 0.0 # offdiagonals
]
if args.radius is not None:
p0[3] = args.radius
p1, ier = optimize.leastsq(sphere_error, p0[:], args=(data))
if not ier in [1, 2, 3, 4]:
print(p1)
raise RuntimeError("Unable to find solution: %u" % ier)
if args.radius is not None:
r = args.radius
else:
r = p1[3]
return (Vector3(p1[0], p1[1], p1[2]),
r,
Vector3(p1[4], p1[5], p1[6]),
Vector3(p1[7], p1[8], p1[9]))
def magfit(logfile):
'''find best magnetometer offset fit to a log file'''
print("Processing log %s" % filename)
mlog = mavutil.mavlink_connection(filename, notimestamps=args.notimestamps)
data = []
last_t = 0
offsets = None
# now gather all the data
while True:
m = mlog.recv_match(condition=args.condition)
if m is None:
break
if m.get_type() == "SENSOR_OFFSETS":
# update current offsets
offsets = Vector3(m.mag_ofs_x, m.mag_ofs_y, m.mag_ofs_z)
if m.get_type() == "RAW_IMU":
mag = Vector3(m.xmag, m.ymag, m.zmag)
# add data point after subtracting the current offsets
if offsets is not None:
data.append(mag - offsets + noise())
if m.get_type() == "MAG" and not args.mag2:
offsets = Vector3(m.OfsX,m.OfsY,m.OfsZ)
mag = Vector3(m.MagX,m.MagY,m.MagZ)
data.append(mag - offsets + noise())
if m.get_type() == "MAG2" and args.mag2:
offsets = Vector3(m.OfsX,m.OfsY,m.OfsZ)
mag = Vector3(m.MagX,m.MagY,m.MagZ)
data.append(mag - offsets + noise())
print("Extracted %u data points" % len(data))
print("Current offsets: %s" % offsets)
orig_data = data
# find average values
avg = Vector3()
count = 0
for d in data:
avg += d
count += 1
avg /= count
# subtract average
data = []
for d in orig_data:
data.append(d - avg)
print("Average %s" % avg)
#data = select_data(data)
diag = Vector3(1,1,1)
offdiag = Vector3(0,0,0)
# remove initial outliers
if False:
data.sort(lambda a,b : radius_cmp(a,b,offsets,diag,offdiag))
data = data[len(data)/16:-len(data)/16]
# do an initial fit
(offsets, field_strength, diag, offdiag) = fit_data(data)
for count in range(3):
# sort the data by the radius
data.sort(lambda a,b : radius_cmp(a,b,offsets,diag,offdiag))
print("Fit %u : %s %s %s field_strength=%6.1f to %6.1f" % (
count, offsets, diag, offdiag,
radius(data[0], offsets,diag,offdiag), radius(data[-1], offsets,diag,offdiag)))
# discard outliers, keep the middle
data = data[len(data)/32:-len(data)/32]
# fit again
(offsets, field_strength, diag, offdiag) = fit_data(data)
print("Final : %s %s %s field_strength=%6.1f to %6.1f" % (
offsets, diag, offdiag,
radius(data[0], offsets, diag, offdiag), radius(data[-1], offsets, diag, offdiag)))
offsets -= avg
print("With average : %s" % offsets)
if args.plot:
data2 = [correct(d,offsets,diag,offdiag) for d in orig_data]
plot_data(orig_data, data2)
def plot_data(orig_data, data):
'''plot data in 3D'''
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
for dd, c, p in [(orig_data, 'r', 1), (data, 'b', 2)]:
ax = fig.add_subplot(1, 2, p, projection='3d')
xs = [ d.x for d in dd ]
ys = [ d.y for d in dd ]
zs = [ d.z for d in dd ]
ax.scatter(xs, ys, zs, c=c, marker='o')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
total = 0.0
for filename in args.logs:
magfit(filename)